Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform

نویسندگان

  • Allan Greenleaf
  • Gunther Uhlmann
چکیده

We consider the Dirichlet-to-Neumann map associated to the Schrö– dinger equation with a potential on a bounded domain Ω ⊂ Rn, n ≥ 3. We show that the integral of the potential over a two-plane Π is determined by the values of the integral kernel of the Dirichlet-to-Neumann map on any open subset U ⊂ ∂Ω which contains Π ∩ ∂Ω. 0 Introduction For Ω a bounded domain in R with Lipschitz boundary, ∂Ω, and q(x) ∈ L∞(Ω) , let Λq : H 1 2 (∂Ω) → H− 1 2 (∂Ω) (0.1) be the Dirichlet-to-Neumann map associated with the operator ∆ + q on Ω. (We assume throughout that λ = 0 is not a Dirichlet eigenvalue for ∆ + q on Ω). If Ω and q(x) are C∞, then Λq is a first order ΨDO, with an integral kernel Kq: Λqf(x) = ∫ ∂Ω Kq(x, y)f(y)dσ(y), x ∈ ∂Ω. (0.2) Partially supported by an NSF grant. Partially supported by an NSF grant and the Royal Research Fund at the University of Washington

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point Measurements for a Neumann-to-Dirichlet Map and the Calderón Problem in the Plane

This work considers properties of the Neumann-to-Dirichlet map for the conductivity equation under the assumption that the conductivity is identically one close to the boundary of the examined smooth, bounded, and simply connected domain. It is demonstrated that the socalled bisweep data, i.e., the (relative) potential differences between two boundary points when delta currents of opposite sign...

متن کامل

On uniqueness in the inverse conductivity problem with local data

The inverse condictivity problem with many boundary measurements consists of recovery of conductivity coefficient a (principal part) of an elliptic equation in a domain Ω ⊂ R, n = 2, 3 from the Neumann data given for all Dirichlet data (Dirichlet-to-Neumann map). Calderon [5] proposed the idea of using complex exponential solutions to demonstrate uniqueness in the linearized inverse condictivit...

متن کامل

Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities

We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ⊂ Rn when the so-called Neumann-to-Dirichlet map is locally given on a non empty curved portion Σ of the boundary ∂Ω. We prove that anisotropic conductivities that are a-priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the...

متن کامل

A numerical technique for linear elliptic partial differential equations in polygonal domains

Integral representations for the solution of linear elliptic partial differential equations (PDEs) can be obtained using Green's theorem. However, these representations involve both the Dirichlet and the Neumann values on the boundary, and for a well-posed boundary-value problem (BVPs) one of these functions is unknown. A new transform method for solving BVPs for linear and integrable nonlinear...

متن کامل

Inverse Boundary Value Problem for the Stokes and the Navier-stokes Equations in the Plane

In this paper, we prove in two dimensions global identifiability of the viscosity in an incompressible fluid by making boundary measurements. The main contribution of this work is to use more natural boundary measurements, the Cauchy forces, than the Dirichlet-to-Neumann map previously considered in [7] to prove the uniqueness of the viscosity for the Stokes equations and for the Navier-Stokes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000